Part II: Causal inference with models
このPartでは,Time-fixedな状況下,つまり曝露もしくは介入,および共変量が一時点の情報しかない状況で,モデルを利用して因果推論する方法を説明しています.G-method(Parametiric g-formula, IP weighting, G-estimation)をメインに,従来の解析方法であるアウトカム回帰分析や傾向スコアを利用した解析方法も扱っています.
生存時間解析のChapterもあります.Cox比例ハザードモデルを使わず,ロジスティック回帰モデルを用いており,特徴的なChapterになっています.
さらに,因果推論への機械学習の利用にも一つのChapterを割いて説明しています.
Chapter 11 Why model?
発表者:Jun Ernesto Okumura (@pacocat) | Twitter
Part Iは手計算できるようなモデルを使わないケースで因果推論を勉強してきました.Part IIからはより複雑なケースを扱うためモデルを導入します.
このChapterでは,モデルを使うことでどのような嬉しいことがあるのかを学習します.Bias-variance trade-offといった(機械学習よりの)統計学になじみ深い概念も扱います. speakerdeck.com
Chapter 12 IP weighting and marginal structural models
このChapterでは,因果効果をInverse probability weighting(IPW,逆確率重み付け)で推定する方法を学びます.疑似集団を作り出して,因果効果を算出する方法です.シンプルなケースではあまり嬉しいことはないですが,複雑なケースでは意味があるStabilized IPW(安定化逆確率重み付け)も扱います.
さらに,IPWのモデルとして,Marginal structural model(周辺構造モデル)も扱います.
Chapter 13 Standardization and the parametric g-formula
このChapaterでは,因果効果をStandardization(標準化)で推定する方法を学びます.モデルを利用するStandardizationをParametiric g-formulaと言います*1. Rを利用した解析の実例もあります.他のg-method(IPW, g-estimation)よりは直感的に分かりやすい手法だと思います*2.
Chapter 14 G-estimation of structural nested models
発表者:M. Tomo (@m_tomo_) | Twitter
このChapterでは,因果効果をG-estimationで推定する方法を学びます.Chapter 12, 13, そして14で扱ったParametric g-formula, IPW, そしてG-estimationをあわせて,G-methodと言います.
非常にトリッキーな方法ですが,巧妙に因果効果を推定します.Part IIIで活躍します.
Chapter 15 Outcome regression and propensity scores
発表者:Koo@医療職からデータサイエンスティストへ (@medi_data0826) | Twitter
このChapterでは,因果効果を回帰モデル(Outcome regression)や傾向スコア(Propensity score)を直接用いて推定する方法を学びます.またG-methodで推定した値との解釈の違いも学習します.
Chapter 16 Instrumental variable estimation
発表者:ビリケン.jp (@j_takurou) | Twitter
このChapterでは,観察研究においてRCTのように未測定交絡の影響を受けずに妥当な推定をする方法として操作変数法(Instrumental variable estimation)を学びます.未測定交絡の影響を受けないというのは魅力的な性質ですが,操作変数法特有の必要な仮定を詳しく学習します.
Chapter 17 Causal survival analysis
発表者:🔥猫と人間が付属している眼鏡🔥 (@sankyoh) | Twitter
これまでのChapterでのアウトカムは,連続データと二値データでした.このChapterでは,関心のあるイベントが発生するまでの時間(Time-to event)に対する因果効果を推定する方法を学びます.
Time-to-eventに対する解析は一般的に生存時間解析と言われます.多くはKaplan-Meier曲線,Log-rank検定,そしてCox比例ハザードモデルを用いて解析していきますが,このChapterではロジスティック回帰モデルを用いた解析方法を学習します.これにより比例ハザードモデルが持つ仮定を回避します.またすべてのG-methodを用いた推定方法も解説します.
Chapter 18 Variable selection for causal inference
発表者:しんめー (@shimmeeee) | Twitter
このChapterでは,予測と因果推論の違いから,モデルに含める変数の選択方法を整理する方法を学習します.さらに因果推論に,機械学習手法をどのように組み込むか解説します.